Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

S2BIN2(x, cons(xs, ys)) → EQ(x, bin2s(xs))
LOG(s(s(x))) → HALF(s(s(x)))
BIN2S(cons(x, xs)) → BIN2SS(x, xs)
HALF(s(s(x))) → HALF(x)
S2BIN2(x, cons(xs, ys)) → IF2(eq(x, bin2s(xs)), x, xs, ys)
S2BIN(x) → S2BIN1(x, 0, cons(nil, nil))
S2BIN1(x, y, lists) → IF1(lt(y, log(x)), x, y, lists)
IF1(false, x, y, lists) → S2BIN2(x, lists)
S2BIN2(x, cons(xs, ys)) → BIN2S(xs)
IF2(false, x, xs, ys) → S2BIN2(x, ys)
BIN2SS(x, cons(1, xs)) → BIN2SS(s(double(x)), xs)
IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
LT(s(x), s(y)) → LT(x, y)
LOG(s(s(x))) → LOG(half(s(s(x))))
S2BIN1(x, y, lists) → LT(y, log(x))
IF1(true, x, y, lists) → MORE(lists)
S2BIN1(x, y, lists) → LOG(x)
EQ(s(x), s(y)) → EQ(x, y)
BIN2SS(x, cons(0, xs)) → BIN2SS(double(x), xs)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

S2BIN2(x, cons(xs, ys)) → EQ(x, bin2s(xs))
LOG(s(s(x))) → HALF(s(s(x)))
BIN2S(cons(x, xs)) → BIN2SS(x, xs)
HALF(s(s(x))) → HALF(x)
S2BIN2(x, cons(xs, ys)) → IF2(eq(x, bin2s(xs)), x, xs, ys)
S2BIN(x) → S2BIN1(x, 0, cons(nil, nil))
S2BIN1(x, y, lists) → IF1(lt(y, log(x)), x, y, lists)
IF1(false, x, y, lists) → S2BIN2(x, lists)
S2BIN2(x, cons(xs, ys)) → BIN2S(xs)
IF2(false, x, xs, ys) → S2BIN2(x, ys)
BIN2SS(x, cons(1, xs)) → BIN2SS(s(double(x)), xs)
IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
LT(s(x), s(y)) → LT(x, y)
LOG(s(s(x))) → LOG(half(s(s(x))))
S2BIN1(x, y, lists) → LT(y, log(x))
IF1(true, x, y, lists) → MORE(lists)
S2BIN1(x, y, lists) → LOG(x)
EQ(s(x), s(y)) → EQ(x, y)
BIN2SS(x, cons(0, xs)) → BIN2SS(double(x), xs)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 7 SCCs with 9 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

R is empty.
The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

HALF(s(s(x))) → HALF(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LOG(s(s(x))) → LOG(half(s(s(x))))

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LOG(s(s(x))) → LOG(half(s(s(x))))

The TRS R consists of the following rules:

half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ RuleRemovalProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LOG(s(s(x))) → LOG(half(s(s(x))))

The TRS R consists of the following rules:

half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

half(s(0)) → 0

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 1   
POL(LOG(x1)) = 2·x1   
POL(half(x1)) = x1   
POL(s(x1)) = 2·x1   



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RuleRemovalProof
QDP
                            ↳ RuleRemovalProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LOG(s(s(x))) → LOG(half(s(s(x))))

The TRS R consists of the following rules:

half(s(s(x))) → s(half(x))
half(0) → 0

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
By using the rule removal processor [15] with the following polynomial ordering [25], at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

half(s(s(x))) → s(half(x))

Used ordering: POLO with Polynomial interpretation [25]:

POL(0) = 0   
POL(LOG(x1)) = 2·x1   
POL(half(x1)) = x1   
POL(s(x1)) = 2 + x1   



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ RuleRemovalProof
                          ↳ QDP
                            ↳ RuleRemovalProof
QDP
                                ↳ DependencyGraphProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LOG(s(s(x))) → LOG(half(s(s(x))))

The TRS R consists of the following rules:

half(0) → 0

The set Q consists of the following terms:

half(0)
half(s(0))
half(s(s(x0)))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

BIN2SS(x, cons(1, xs)) → BIN2SS(s(double(x)), xs)
BIN2SS(x, cons(0, xs)) → BIN2SS(double(x), xs)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

BIN2SS(x, cons(1, xs)) → BIN2SS(s(double(x)), xs)
BIN2SS(x, cons(0, xs)) → BIN2SS(double(x), xs)

R is empty.
The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

BIN2SS(x, cons(1, xs)) → BIN2SS(s(double(x)), xs)
BIN2SS(x, cons(0, xs)) → BIN2SS(double(x), xs)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

R is empty.
The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

R is empty.
The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(s(x), s(y)) → EQ(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF2(false, x, xs, ys) → S2BIN2(x, ys)
S2BIN2(x, cons(xs, ys)) → IF2(eq(x, bin2s(xs)), x, xs, ys)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF2(false, x, xs, ys) → S2BIN2(x, ys)
S2BIN2(x, cons(xs, ys)) → IF2(eq(x, bin2s(xs)), x, xs, ys)

The TRS R consists of the following rules:

bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
bin2ss(x, nil) → x
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

IF2(false, x, xs, ys) → S2BIN2(x, ys)
S2BIN2(x, cons(xs, ys)) → IF2(eq(x, bin2s(xs)), x, xs, ys)

The TRS R consists of the following rules:

bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
bin2ss(x, nil) → x
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))

We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
S2BIN1(x, y, lists) → IF1(lt(y, log(x)), x, y, lists)

The TRS R consists of the following rules:

eq(0, 0) → true
eq(0, s(y)) → false
eq(s(x), 0) → false
eq(s(x), s(y)) → eq(x, y)
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
bin2s(nil) → 0
bin2s(cons(x, xs)) → bin2ss(x, xs)
bin2ss(x, nil) → x
bin2ss(x, cons(0, xs)) → bin2ss(double(x), xs)
bin2ss(x, cons(1, xs)) → bin2ss(s(double(x)), xs)
half(0) → 0
half(s(0)) → 0
half(s(s(x))) → s(half(x))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
s2bin(x) → s2bin1(x, 0, cons(nil, nil))
s2bin1(x, y, lists) → if1(lt(y, log(x)), x, y, lists)
if1(true, x, y, lists) → s2bin1(x, s(y), more(lists))
if1(false, x, y, lists) → s2bin2(x, lists)
s2bin2(x, nil) → bug_list_not
s2bin2(x, cons(xs, ys)) → if2(eq(x, bin2s(xs)), x, xs, ys)
if2(true, x, xs, ys) → xs
if2(false, x, xs, ys) → s2bin2(x, ys)

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
S2BIN1(x, y, lists) → IF1(lt(y, log(x)), x, y, lists)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Narrowing
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
S2BIN1(x, y, lists) → IF1(lt(y, log(x)), x, y, lists)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule S2BIN1(x, y, lists) → IF1(lt(y, log(x)), x, y, lists) at position [0] we obtained the following new rules:

S2BIN1(s(0), y1, y2) → IF1(lt(y1, 0), s(0), y1, y2)
S2BIN1(s(s(x0)), y1, y2) → IF1(lt(y1, s(log(half(s(s(x0)))))), s(s(x0)), y1, y2)
S2BIN1(0, y1, y2) → IF1(lt(y1, 0), 0, y1, y2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ DependencyGraphProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
S2BIN1(s(0), y1, y2) → IF1(lt(y1, 0), s(0), y1, y2)
S2BIN1(s(s(x0)), y1, y2) → IF1(lt(y1, s(log(half(s(s(x0)))))), s(s(x0)), y1, y2)
S2BIN1(0, y1, y2) → IF1(lt(y1, 0), 0, y1, y2)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
S2BIN1(s(s(x0)), y1, y2) → IF1(lt(y1, s(log(half(s(s(x0)))))), s(s(x0)), y1, y2)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule S2BIN1(s(s(x0)), y1, y2) → IF1(lt(y1, s(log(half(s(s(x0)))))), s(s(x0)), y1, y2) at position [0,1,0,0] we obtained the following new rules:

S2BIN1(s(s(x0)), y1, y2) → IF1(lt(y1, s(log(s(half(x0))))), s(s(x0)), y1, y2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
QDP
                                    ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
S2BIN1(s(s(x0)), y1, y2) → IF1(lt(y1, s(log(s(half(x0))))), s(s(x0)), y1, y2)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists)) we obtained the following new rules:

IF1(true, s(s(z0)), z1, z2) → S2BIN1(s(s(z0)), s(z1), more(z2))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Instantiation
QDP
                                        ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, s(s(z0)), z1, z2) → S2BIN1(s(s(z0)), s(z1), more(z2))
S2BIN1(s(s(x0)), y1, y2) → IF1(lt(y1, s(log(s(half(x0))))), s(s(x0)), y1, y2)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule S2BIN1(s(s(x0)), y1, y2) → IF1(lt(y1, s(log(s(half(x0))))), s(s(x0)), y1, y2) we obtained the following new rules:

S2BIN1(s(s(z0)), s(z1), y_0) → IF1(lt(s(z1), s(log(s(half(z0))))), s(s(z0)), s(z1), y_0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Instantiation
                                      ↳ QDP
                                        ↳ Instantiation
QDP
                                            ↳ Rewriting
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, s(s(z0)), z1, z2) → S2BIN1(s(s(z0)), s(z1), more(z2))
S2BIN1(s(s(z0)), s(z1), y_0) → IF1(lt(s(z1), s(log(s(half(z0))))), s(s(z0)), s(z1), y_0)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By rewriting [15] the rule S2BIN1(s(s(z0)), s(z1), y_0) → IF1(lt(s(z1), s(log(s(half(z0))))), s(s(z0)), s(z1), y_0) at position [0] we obtained the following new rules:

S2BIN1(s(s(z0)), s(z1), y_0) → IF1(lt(z1, log(s(half(z0)))), s(s(z0)), s(z1), y_0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Instantiation
                                      ↳ QDP
                                        ↳ Instantiation
                                          ↳ QDP
                                            ↳ Rewriting
QDP
                                                ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, s(s(z0)), z1, z2) → S2BIN1(s(s(z0)), s(z1), more(z2))
S2BIN1(s(s(z0)), s(z1), y_0) → IF1(lt(z1, log(s(half(z0)))), s(s(z0)), s(z1), y_0)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule IF1(true, s(s(z0)), z1, z2) → S2BIN1(s(s(z0)), s(z1), more(z2)) we obtained the following new rules:

IF1(true, s(s(z0)), s(z1), z2) → S2BIN1(s(s(z0)), s(s(z1)), more(z2))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Instantiation
                                      ↳ QDP
                                        ↳ Instantiation
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
QDP
                                                    ↳ Instantiation
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, s(s(z0)), s(z1), z2) → S2BIN1(s(s(z0)), s(s(z1)), more(z2))
S2BIN1(s(s(z0)), s(z1), y_0) → IF1(lt(z1, log(s(half(z0)))), s(s(z0)), s(z1), y_0)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
By instantiating [15] the rule S2BIN1(s(s(z0)), s(z1), y_0) → IF1(lt(z1, log(s(half(z0)))), s(s(z0)), s(z1), y_0) we obtained the following new rules:

S2BIN1(s(s(z0)), s(s(z1)), y_0) → IF1(lt(s(z1), log(s(half(z0)))), s(s(z0)), s(s(z1)), y_0)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Instantiation
                                      ↳ QDP
                                        ↳ Instantiation
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
QDP
                                                        ↳ MNOCProof
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, s(s(z0)), s(z1), z2) → S2BIN1(s(s(z0)), s(s(z1)), more(z2))
S2BIN1(s(s(z0)), s(s(z1)), y_0) → IF1(lt(s(z1), log(s(half(z0)))), s(s(z0)), s(s(z1)), y_0)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Rewriting
                                  ↳ QDP
                                    ↳ Instantiation
                                      ↳ QDP
                                        ↳ Instantiation
                                          ↳ QDP
                                            ↳ Rewriting
                                              ↳ QDP
                                                ↳ Instantiation
                                                  ↳ QDP
                                                    ↳ Instantiation
                                                      ↳ QDP
                                                        ↳ MNOCProof
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, s(s(z0)), s(z1), z2) → S2BIN1(s(s(z0)), s(s(z1)), more(z2))
S2BIN1(s(s(z0)), s(s(z1)), y_0) → IF1(lt(s(z1), log(s(half(z0)))), s(s(z0)), s(s(z1)), y_0)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

Q is empty.
We have to consider all (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
S2BIN1(x, y, lists) → IF1(lt(y, log(x)), x, y, lists)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

eq(0, 0)
eq(0, s(x0))
eq(s(x0), 0)
eq(s(x0), s(x1))
bin2s(nil)
bin2s(cons(x0, x1))
bin2ss(x0, nil)
bin2ss(x0, cons(0, x1))
bin2ss(x0, cons(1, x1))
s2bin(x0)
s2bin1(x0, x1, x2)
if1(true, x0, x1, x2)
if1(false, x0, x1, x2)
s2bin2(x0, nil)
s2bin2(x0, cons(x1, x2))
if2(true, x0, x1, x2)
if2(false, x0, x1, x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ MNOCProof

Q DP problem:
The TRS P consists of the following rules:

IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
S2BIN1(x, y, lists) → IF1(lt(y, log(x)), x, y, lists)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

The set Q consists of the following terms:

lt(0, s(x0))
lt(x0, 0)
lt(s(x0), s(x1))
half(0)
half(s(0))
half(s(s(x0)))
log(0)
log(s(0))
log(s(s(x0)))
more(nil)
more(cons(x0, x1))

We have to consider all minimal (P,Q,R)-chains.
We use the modular non-overlap check [17] to decrease Q to the empty set.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ MNOCProof
QDP

Q DP problem:
The TRS P consists of the following rules:

IF1(true, x, y, lists) → S2BIN1(x, s(y), more(lists))
S2BIN1(x, y, lists) → IF1(lt(y, log(x)), x, y, lists)

The TRS R consists of the following rules:

more(nil) → nil
more(cons(xs, ys)) → cons(cons(0, xs), cons(cons(1, xs), cons(xs, ys)))
log(0) → 0
log(s(0)) → 0
log(s(s(x))) → s(log(half(s(s(x)))))
lt(0, s(y)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
half(s(s(x))) → s(half(x))
half(0) → 0
half(s(0)) → 0

Q is empty.
We have to consider all (P,Q,R)-chains.